

Simulation and Control of Skeletondriven Soft Body Characters

Libin Liu*

KangKang Yin[†]

Bin Wang[†]

Baining Guo[‡]

*Tsinghua University

[†]National University of Singapore

[‡]Microsoft Research Asia

Motivation

Simulation and Control of Rigid Body Characters

[Lee et al. 2010]

[Coros et al. 2010]

[Liu et al. 2012]

[Al Borno et al. 2013]

Motivation

SA2013.SIGGRAPH.ORG

Deformation as Secondary Animation

Skinning

[[]McAdams et al. 2011] Skeleton-driven jiggling

[Kavan and Sorkine 2012]

[Capell et al. 2002]

Motivation

- Controllable Soft Bodies
 - External force

- Internal forceMuscle fibers
 - Rest shapes
- Skeleton-driven

[Tan et al. 2012]

[Barbič and Popović 2008]

[Coros et al. 2012]

Outline

- Motivation
- System Overview
- Skeleton-driven Soft Body Dynamics
 - Skeleton dynamics
 - Soft body dynamics
- Motion Control
 - Inverse dynamics
 - Time scaling
- Conclusion

System Overview

Skeleton & Soft Body

8/66

System Overview

Simulation

Simulate skeleton

System Overview

Simulation

Simulate soft body

Models

Model Statistics

- # vertices: ~1200
- # elements: ~4000

System Overview

Skeleton Dynamics

SPONSORED BY

PD-servos

Skeleton Dynamics

SPONSORED BY

Stable PD-servos [Baraff and Witkin 1998; Tan et al. 2011]

Skeleton Dynamics

Integration with Open Dynamic Engine

System Overview

SPONSORED BY

[Lee et al. 2009]

Pose-based Plasticity

Pose-based definition of the contract of the

Deformed Shape *x*

Additive Plasticity

Generate Reference Shape

- Linear Blend Skinning
- Dual Quaternion Skinning [Kavan et al. 2007]
- Elasticity-inspired methods [Kavan and Sorkine 2012]
- Physically based methods [McAdams et al. 2011]

Rest Shape X

Pose-based Reference Shape \bar{x}

Pose-based Damping

- Pose-based Damping
 - Damping reference point

Simulation Pipeline

Simulation Pipeline

Simulation Pipeline

Update fixed nodes

Update fine surface mesh

Update reference pose and velocity

Soft body: contact force

Soft body: elastic forces and damping forces

Skeleton: elastic forces & damping forces from soft body

Skeleton: actuation PD torques

Integration

Angular Momentum Conservation

The framework conserves angular momentum

SPONSORED BY

Skeleton Dynamics System

Control Construction

- Control Construction
 - Sampling-based method [Liu et al. 2010]

Control Construction

Augmented sampling-based method

$\tau = ID(q, \dot{q}, \ddot{q}, f_{ext}, \tau_{ext})$

 $\tau = ID(q, \dot{q}, \ddot{q}, f_{ext}, \tau_{ext})$

Estimate *q*, *q*

forward finite differencing

$$\tau = ID(q, \dot{q}, \ddot{q}, f_{ext}, \tau_{ext})$$

Estimate f_{ext} , τ_{ext}

• f_{ext} , τ_{ext} = Gravity + GRF (Ground Reaction Force)

$$\tau = ID(q, \dot{q}, \ddot{q}, f_{ext}, \tau_{ext})$$

- Estimate Ground Reaction Force (GRF)
 - GRF can only push the character

 $f_{\perp} \ge 0$

Max possible friction

 $\left\|\boldsymbol{f}_{\parallel}\right\| \leq \mu f_{\perp}$

• Max possible torque $\|\boldsymbol{\tau}\| \leq r_{max} f_{max}$ $f_{max} = \sqrt{1 + \mu^2} f_{\perp}$

 $\tau = ID(q, \dot{q}, \ddot{q}, f_{ext}, \tau_{ext})$

Estimate Target Pose

Control Construction

Augmented sampling-based method

Time Scaling

Sample Time Scaling Parameter

Time Scaling

Sample Time Scaling Parameter

Closed-loop Feedback Policies

Linear feedback policies [Liu et al. 2012]

Closed-loop Feedback Policies

Conclusion

SIGGRAPHASIA2013

- Two-way simulation framework for soft body characters
 - Pose-based plasticity
 - Angular momentum Conservation
 - Interactive rates

- Augmented sampling-based control construction
 - Inverse Dynamics
 - Time Scaling

Limitations

Stability Issues

Explicit coupling and solver

Quality Issues

- Low-res volumetric mesh
- Linear skinning method

- Capability Issues
 - Success rate < 100%</p>

More stable coupling with implicit integrators

- Remeshing and better skinning techniques
- Incorporating material properties and planning

Thanks

